NCERT Solutions Class 9 Maths Chapter 2 Polynomials Exercise 2.5
Introduction:
In this exercise/article we will learn about Polynomials. Algebraic identities with Examples & Solutions.
- Identity I : ( x + y )2 = x2 + 2xy + y2
- Identity II : ( x - y )2 = x2 - 2xy + y2
- Identity III : x2 - y2 = ( x + y ) ( x - y)
- Identity IV : ( x + a ) ( x + b ) = x2 + ( a + b ) x + ab
- Identity V : ( x + y + z )2 = ( x2 + y2 + z2 + 2xy + 2yz + 2zx )
- Identity VI : ( x + y )3 = x3 + y3 + 3xy ( x + y )
- Identity VII : ( x - y )3 = x3 - y3 - 3xy ( x - y )
- Identity VIII : x3 + y3 + z3 - 3xyz = ( x + y + z ) ( x2 + y2 + z2 - xy - yz - zx ) .
NCERT Class 9 Maths Chapter 2 Polynomials :
- NCERT Class 9 Maths Chapter 2 Polynomials Exercise 2.1
- NCERT Class 9 Maths Chapter 2 Polynomials Exercise 2.2
- NCERT Class 9 Maths Chapter 2 Polynomials Exercise 2.3
- NCERT Class 9 Maths Chapter 2 Polynomials Exercise 2.4
- NCERT Class 9 Maths Chapter 2 Polynomials Exercise 2.5
- Extra Questions Class 9 Maths Chapter 2 Polynomials
Class 9 Maths Exercise 2.5 (Page-48)
Q1. Use suitable identities to find the following products :
(i) ( x + 4 ) ( x + 10 )
Solution :
Given ( x + 4 ) ( x + 10 )
[ Using identity = ( x + a ) ( x + b ) = x2 + ( a + b ) x + ab ]
( x )2 + ( 4 + 10 ) × x + 4 × 10
= x2 + ( 14 ) × x + 40
= x2 + 14x + 40
So, answer = x2 + 14x + 40
(ii) ( x + 8 ) ( x - 10 )
Solution :
Given ( x + 8 ) ( x - 10 )
[ Using identity = ( x + a ) ( x + b ) = x2 + ( a + b ) x + ab ]
( x )2 + ( 8 - 10 ) × x + 8 × ( - 10 )
= x2 - 2 × x - 80
= x2 - 2x - 80
So, answer = x2 - 2x - 80
(iii) ( 3x + 4 ) ( 3x - 5 )
Solution :
Given ( 3x + 4 ) ( 3x - 5 )
[ Using identity = ( x + a ) ( x + b ) = x2 + ( a + b ) x + ab ]
( 3x )2 + ( 4 - 5 ) × 3x + 4 × ( - 5 )
= 9x2 - ( 1 ) × 3x - 20
= 9x2 - 3x - 20
So, answer is 9x2 - 3x - 20
(iv) ( y2 + \(\displaystyle \frac{3}{2}\) )
Solution :
Given ( y2 + \(\displaystyle \frac{3}{2}\) )
[ Using identity = ( a + b ) ( a - b ) = a2 - b2 ]
\(\displaystyle {{(\,{{y}^{2}}\,)}^{2}}\,-\,{{(\,\frac{3}{2}\,)}^{2}}\)
= \(\displaystyle {{y}^{4}}\,-\,\frac{9}{4}\)
So, answer = \(\displaystyle {{y}^{4}}\,-\,\frac{9}{4}\)
(v) ( 3 - 2x ) ( 3 + 2x )
Solution :
Given ( 3 - 2x ) ( 3 + 2x )
[ Using identity = ( a + b ) ( a - b ) = a2 - b2 ]
( 3 )2 - ( 2x )2
= 9 - 4x2
So, answer = 9 - 4x2
Q2. Evaluate the following products without multiplying directly :
(i) 103 × 107
Solution :
We have 103 × 107
( 100 + 3 ) × ( 100 + 7 )
[ Using identity = ( x + a ) ( x + b ) = x2 + ( a + b ) x + ab ]
( 100 )2 + ( 3 + 7 ) 100 + 3 × 7
= 10000 + ( 10 ) × 100 + 21
= 10000 + 1000 + 21
= 11021
So, answer = 11021
(ii) 95 × 96
Solution :
We have 95 × 96
( 100 - 5 ) × ( 100 - 4 )
[ Using identity = ( x + a ) ( x + b ) = x2 + ( a + b ) x + ab ]
( 100 )2 + ( - 5 - 4 ) 100 + ( - 5 ) × ( - 4 )
= 10000 + ( - 9 ) × 100 + 20
= 10000 - 900 + 20
= 10020 - 900
= 9120
So, answer = 9120
(iii) 104 × 96
Solution :
We have 104 × 96
( 100 + 4 ) × ( 100 - 4 )
[ Using identity = ( a + b ) ( a - b ) = a2 - b2 ]
( 100 )2 - ( 4 )2
= 10000 - 16
= 9984
So, answer = 9984
Q3. Factorise the following using appropriate identities :
(i) 9x2 + 6xy + y2
Solution :
We have 9x2 + 6xy + y2
[ using identity = ( a + b )2 = a2 + 2ab + b2 ]
( 3x )2 + 2 × 3x × y + ( y )2
= ( 3x + y )2
= ( 3x + y ) ( 3x + y )
So, answer = ( 3x + y ) ( 3x + y )
(ii) 4y2 - 4y + 1
Solution :
We have 4y2 - 4y + 1
[ using identity = ( a - b )2 = a2 - 2ab + b2 ]
( 2y )2 - 2 × 2y × 1 + ( 1 )2
= ( 2y - 1 )2
= ( 2y - 1 ) ( 2y - 1 )
So, answer = ( 2y - 1 ) ( 2y - 1 )
(iii) x2 - \(\displaystyle \frac{{{{y}^{2}}}}{{100}}\)
Solution :
We have x2 - \(\displaystyle \frac{{{{y}^{2}}}}{{100}}\)
[ Using identity = ( a + b ) ( a - b ) = a2 - b2 ]
( x )2 - ( \(\displaystyle \frac{y}{{10}}\) )2
( x + \(\displaystyle \frac{y}{{10}}\) ) ( x - \(\displaystyle \frac{y}{{10}}\) )
So, answer = ( x + \(\displaystyle \frac{y}{{10}}\) ) ( x - \(\displaystyle \frac{y}{{10}}\) )
Q4. Expand each of the following, using suitable identities :
(i) ( x + 2y + 4z )2
Solution :
We have ( x + 2y + 4z )2
[ using identity = ( x + y + z )2 = ( x2 + y2 + z2 + 2xy + 2yz + 2zx ) ]
( x )2 + ( 2y )2 + ( 4z )2 + 2 × x × 2y + 2 × 2y × 4z + 2 × x × 4z
= x2 + 4y2 + 16z2 + 4xy + 16yz + 8xz
So, x2 + 4y2 + 16z2 + 4xy + 16yz + 8xz
(ii) ( 2x - y + z )2
Solution :
We have ( 2x - y + z )2
[ using identity = ( x + y + z )2 = ( x2 + y2 + z2 + 2xy + 2yz + 2zx ) ]
( 2x )2 + ( - y )2 + ( z )2 + 2 × 2x × ( -y ) + 2 × ( -y ) × z + 2 × z × 2x
= 4x2 + y2 + z2 - 4xy - 2yz + 4xz
So, answer = 4x2 + y2 + z2 - 4xy - 2yz + 4xz
(iii) ( - 2x + 3y + 2z )2
Solution :
We have ( - 2x + 3y + 2z )2
[ using identity = ( x + y + z )2 = ( x2 + y2 + z2 + 2xy + 2yz + 2zx ) ]
( - 2x )2 + ( 3y )2 + ( 2z )2 + 2 × ( -2x ) × 3y + 2 × 3y × 2z + 2 × 2z × ( -2x )
= 4x2 + 9y2 + 4z2 - 12xy + 12yz - 8xz
So, answer = 4x2 + 9y2 + 4z2 - 12xy + 12yz - 8xz
(iv) ( 3a - 7b - c )2
Solution :
We have ( 3a - 7b - c )2
[ using identity = ( x + y + z )2 = ( x2 + y2 + z2 + 2xy + 2yz + 2zx ) ]
( 3a )2 + ( -7b )2 + ( -c )2 + 2 × 3a × ( -7b ) + 2 × ( -7b ) × ( -c ) + 2 × ( -c ) × 3a
= 9a2 + 49b2 + c2 - 42ab + 14bc - 6ac
So, answer = 9a2 + 49b2 + c2 - 42ab + 14bc - 6ac
(v) ( - 2x + 5y - 3z )2
Solution :
We have ( - 2x + 5y - 3z )2
[ using identity = ( x + y + z )2 = ( x2 + y2 + z2 + 2xy + 2yz + 2zx ) ]
( -2x )2 + ( 5y )2 + ( -3z )2 + 2 × ( -2x ) × 5y + 2 × 5y × ( -3z ) + 2 × ( -3z ) × ( -2x )
= 4x2 + 25y2 + 9z2 - 20xy - 30yz + 12xz
So, answer = 4x2 + 25y2 + 9z2 - 20xy - 30yz + 12xz
(v) \(\displaystyle {{\left[ {\frac{1}{4}a-\frac{1}{2}b+1} \right]}^{2}}\)
Solution :
We have \(\displaystyle {{\left[ {\frac{1}{4}a-\frac{1}{2}b+1} \right]}^{2}}\)
[ using identity = ( x + y + z )2 = ( x2 + y2 + z2 + 2xy + 2yz + 2zx ) ]
=
= \(\displaystyle \frac{a}{{16}}\,+\,\frac{b}{4}\,+\,1\,-\,\frac{{ab}}{4}\,-\,b\,+\,\frac{a}{2}\,\)
So, answer = \(\displaystyle \frac{a}{{16}}\,+\,\frac{b}{4}\,+\,1\,-\,\frac{{ab}}{4}\,-\,b\,+\,\frac{a}{2}\,\)
Q5. Factorise :
(i) 4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz
Solution :
We have 4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz
[ using identity = ( x + y + z )2 = ( x2 + y2 + z2 + 2xy + 2yz + 2zx ) ]
( 2x )2 + ( 3y )2 + ( -4z )2 + 2 × 2x × 3y + 2 × 3y × -4z + 2 × -4z × 2x
= ( 2x + 3y - 4z )2
= ( 2x + 3y - 4z ) ( 2x + 3y - 4z )
So, answer = ( 2x + 3y - 4z ) ( 2x + 3y - 4z )
(ii) 2x2 + y2 + 8z2 - 2√2xy + 4√2yz - 8xz
Solution :
We have 2x2 + y2 + 8z2 - 2√2xy + 4√2yz - 8xz
[ using identity = ( x + y + z )2 = ( x2 + y2 + z2 + 2xy + 2yz + 2zx ) ]
( -√2x )2 + ( y )2 + ( 2√2z )2 + 2 × ( -√2x ) × y + 2 × y × 2√2z + 2 × 2√2z × ( -√2x )
= ( -√2x + y + 2√2z )2
= ( -√2x + y + 2√2z ) ( -√2x + y + 2√2z )
So, answer = ( -√2x + y + 2√2z ) ( -√2x + y + 2√2z )
Q6. Write the following cubes in expanded form :
(i) ( 2x + 1 )3
Solution :
We have ( 2x + 1 )3
[ using identity = ( x + y )3 = x3 + y3 + 3xy ( x + y ) ]
( 2x )3 + ( 1 ) + 3 × 2x × 1 ( 2x + 1 )
= 8x3 + 1 + 6x ( 2x + 1 )
= 8x3 + 1 + 12x2 + 6x
= 8x3 + 12x2 + 6x + 1
So, answer = 8x3 + 12x2 + 6x + 1
(ii) ( 2a - 3b )3
Solution :
We have ( 2a - 3b )3
[ using identity = ( x - y )3 = x3 - y3 - 3xy ( x - y ) ]
( 2a )3 - ( 3b )3 - 3 × 2a × 3b ( 2a - 3b )
= 8a3 - 27b3 - 18ab ( 2a - 3b )
= 8a3 - 27b3 - 36a2b + 54ab2
So, answer = 8a3 - 27b3 - 36a2b + 54ab2
(iii) \(\displaystyle {{\left[ {\frac{3}{2}x\,+\,1} \right]}^{3}}\)
Solution :
We have \(\displaystyle {{\left[ {\frac{3}{2}x\,+\,1} \right]}^{3}}\)
[ using identity = ( x + y )3 = x3 + y3 + 3xy ( x + y ) ]
\(\displaystyle {{\left[ {\frac{3}{2}x} \right]}^{3}}\,+\,{{(\,1\,)}^{3}}\,+\,3\,\times \,\frac{3}{2}x\,\times \,1\,\left( {\frac{3}{2}x\,+\,1} \right)\)
= \(\displaystyle \frac{{27}}{8}{{x}^{3}}\,+\,1\,+\,\frac{{9x}}{2}\,\left( {\frac{3}{2}x\,+\,1} \right)\)
= \(\displaystyle \frac{{27}}{8}{{x}^{3}}\,+\,1\,+\,\frac{{27{{x}^{2}}}}{4}\,+\,\frac{{9x}}{2}\)
= \(\displaystyle \frac{{27}}{8}{{x}^{3}}\,+\,\frac{{27{{x}^{2}}}}{4}\,+\,\frac{{9x}}{2}\,+\,1\)
So, answer = \(\displaystyle \frac{{27}}{8}{{x}^{3}}\,+\,\frac{{27{{x}^{2}}}}{4}\,+\,\frac{{9x}}{2}\,+\,1\)
(iv) \(\displaystyle {{\left[ {x\,-\,\frac{2}{3}y} \right]}^{3}}\)
Solution :
We have \(\displaystyle {{\left[ {x\,-\,\frac{2}{3}y} \right]}^{3}}\)
[ using identity = ( x - y )3 = x3 - y3 - 3xy ( x - y ) ]
\(\displaystyle {{(\,x\,)}^{3}}\,-\,{{\left[ {\frac{2}{3}y} \right]}^{3}}\,-\,3\,\times \,x\,\times \,\frac{2}{3}y\,\left( {x\,-\,\frac{2}{3}y} \right)\)
=
= \(\displaystyle {{x}^{3}}\,-\,\frac{8}{{27}}{{y}^{3}}\,-\,2xy\,\left( {x\,-\,\frac{2}{3}y} \right)\)
= \(\displaystyle {{x}^{3}}\,-\,\frac{8}{{27}}{{y}^{3}}\,-\,2{{x}^{2}}y\,+\,\frac{{4x{{y}^{2}}}}{3}\)
So, answer = \(\displaystyle {{x}^{3}}\,-\,\frac{8}{{27}}{{y}^{3}}\,-\,2{{x}^{2}}y\,+\,\frac{{4x{{y}^{2}}}}{3}\)
Q7. Evaluate the following using suitable identities :
(i) (99)3
Solution :
We have (99)3
( 100 - 1 )3
[ using identity = ( x - y )3 = x3 - y3 - 3xy ( x - y ) ]
( 100 )3 - ( 1 )3 - 3 × 100 × 1 ( 100 - 1 )
= 1000000 - 1 - 300 ( 100 - 1 )
= 1000000 - 1 - 30000 + 300
= 1000300 - 30001
= 970299
So, answer = 970299
(ii) ( 102 )3
Solution :
We have ( 102 )3
( 100 + 2 )3
[ using identity = ( x + y )3 = x3 + y3 + 3xy ( x + y ) ]
( 100 )3 + ( 2 )3 + 3 × 100 × 2 ( 100 + 2 )
= 1000000 + 8 + 600 ( 100 + 2 )
= 1000000 + 8 + 60000 + 1200
= 1061208
So, answer = 1061208
(iii) ( 998 )3
Solution :
We have ( 998 )3
( 1000 - 2 )3
[ using identity = ( x - y )3 = x3 - y3 - 3xy ( x - y ) ]
( 1000 )3 - ( 2 )3 - 3 × 1000 × 2 ( 1000 - 2 )
= 1000000000 - 8 - 6000 ( 1000 - 2 )
= 1000000000 - 8 - 6000000 + 12000
= 1000012000 - 6000008
= 994011992
So, answer = 994011992
Q8. Factorise each of the following :
(i) 8a3 + b3 + 12a2b + 6ab2
Solution :
We have 8a3 + b3 + 12a2b + 6ab2
[ using identity = ( x + y )3 = x3 + y3 + 3xy ( x + y ) ]
( 2a )3 + ( b )3 + 3 × 2a × b ( 2a + b )
= ( 2a + b )3
= ( 2a + b ) ( 2a + b ) ( 2a + b )
So, answer = ( 2a + b ) ( 2a + b ) ( 2a + b )
(ii) 8a3 - b3 - 12a2b + 6ab2
Solution :
We have 8a3 - b3 - 12a2b + 6ab2
[ using identity = ( x - y )3 = x3 - y3 - 3xy ( x - y ) ]
( 2a )3 - ( b )3 - 3 × 2a × b ( 2a - b )
= ( 2a - b )3
= ( 2a - b ) ( 2a - b ) ( 2a - b )
So, answer = ( 2a - b ) ( 2a - b ) ( 2a - b )
(iii) 27 - 125a3 - 135a + 225a2
Solution :
We have 27 - 125a3 - 135a + 225a2
[ using identity = ( x - y )3 = x3 - y3 - 3xy ( x - y ) ]
( 3 )3 - ( 5a )3 - 3 × 3 × 5a ( 3 - 5a )
= ( 3 - 5a )3
= ( 3 - 5a ) ( 3 - 5a ) ( 3 - 5a )
So, answer = ( 3 - 5a ) ( 3 - 5a ) ( 3 - 5a )
(iv) 64a3 - 27b3 - 144a2b + 108 ab2
Solution :
We have 64a3 - 27b3 - 144a2b + 108 ab2
[ using identity = ( x - y )3 = x3 - y3 - 3xy ( x - y ) ]
( 4a )3 - ( 3b )3 - 3 × 4a × 3b ( 4a - 3b )
= ( 4a - 3b )3
= ( 4a - 3b ) ( 4a - 3b ) ( 4a - 3b )
So, answer = ( 4a - 3b ) ( 4a - 3b ) ( 4a - 3b )
(v) 27p3 - \(\displaystyle \frac{1}{{216}}\,-\,\frac{9}{2}{{p}^{2}}\,+\,\frac{1}{4}p\)
Solution :
We have 27p3 - \(\displaystyle \frac{1}{{216}}\,-\,\frac{9}{2}{{p}^{2}}\,+\,\frac{1}{4}p\)
[ using identity = ( x - y )3 = x3 - y3 - 3xy ( x - y ) ]
( 3p )3 - ( \(\displaystyle \frac{1}{6}\) )3 - 3 × 3p × \(\displaystyle \frac{1}{6}\) ( 3p - \(\displaystyle \frac{1}{6}\) )
= ( 3p - \(\displaystyle \frac{1}{6}\) )3
= ( 3p - \(\displaystyle \frac{1}{6}\) ) ( 3p - \(\displaystyle \frac{1}{6}\) ) ( 3p - \(\displaystyle \frac{1}{6}\) )
So, answer = ( 3p - \(\displaystyle \frac{1}{6}\) ) ( 3p - \(\displaystyle \frac{1}{6}\) ) ( 3p - \(\displaystyle \frac{1}{6}\) )
NCERT Solutions Class 9 Maths Chapter 2
Q9. Verify : (i) x3 + y3 = ( x + y ) ( x2 - xy + y2 )
Solution :
Given x3 + y3
LHS = x3 + y3 , RHS = ( x + y ) ( x2 - xy + y2 )
We have multiply to the first bracket by the second bracket
( x + y ) ( x2 - xy + y2 )
= x ( x2 - xy + y2 ) + y ( x2 - xy + y2 )
= x3 - x2y + xy2 + x2y - xy2 + y3 [ because - x2y + x2y = 0 , xy2 - xy2 = 0 ]
= x3 + y3
∴ LHS = RHS
So, proved LHS = RHS
(ii) x3 - y3 = ( x - y ) ( x2 + xy + y2 )
Solution :
Given x3 - y3
LHS = x3 - y3 , RHS = ( x - y ) ( x2 + xy + y2 )
We have multiply to the first bracket by the second bracket
( x - y ) ( x2 + xy + y2 )
= x ( x2 + xy + y2 ) - y ( x2 + xy + y2 )
= x3 + x2y + xy2 - xy2 - xy2 - y3 [ because x2y - x2y = 0 , xy2 - xy2 = 0 ]
= x3 - y3
∴ LHS = RHS
So, proved LHS = RHS
Q10. Factorise each of the following :
(i) 27x3 + 125z3
Solution :
We have 27x3 + 125z3
( 3y )3 + ( 5z )3
= ( 3y + 5z ) ( 9y2 - 15yz + 25z2 )
So, answer = ( 3y + 5z ) ( 9y2 - 15yz + 25z2 )
(ii) 64m3 - 343n3
Solution :
We have 64m3 - 343n3
( 4m )3 - ( 7n )3
= ( 4m - 7n ) ( 16m2 + 28mn + 49n2 )
So, answer = ( 4m - 7n ) ( 16m2 + 28mn + 49n2 )
[ Hint : See Question 9. ]
Q11. Factorise : 27x3 + y3 + z3 - 9xyz
Solution :
We have 27x3 + y3 + z3 - 9xyz
[ using identity = x3 + y3 + z3 - 3xyz = ( x + y + z ) ( x2 + y2 + z2 - xy - yz - zx ) ]
( 3x )3 + ( y )3 + ( z )3 - 3 × ( 3x ) ( y ) ( z )
= ( 3x + y + z ) [ ( 3x )2 + ( y )2 + ( z )2 - ( 3x )( y ) - ( y )( z ) - ( z )( 3x )
= ( 3x + y + z ) ( 9x2 + y2 + z2 - 3xy - yz - 3xz )
So, answer = ( 3x + y + z ) ( 9x2 + y2 + z2 - 3xy - yz - 3xz )
Q12. Verify that x3 + y3 + z3 - 3xyz = \(\displaystyle \frac{1}{2}\) ( x + y + z )
[ ( x - y )2 + ( y - z )2 + ( z - x )2 ]
Solution :
We have x3 + y3 + z3 - 3xyz
LHS = x3 + y3 + z3 - 3xyz , RHS = \(\displaystyle \frac{1}{2}\) ( x + y + z )
[ ( x - y )2 + ( y - z )2 + ( z - x )2 ]
[ using identity = ( a - b )2 = a2 - 2ab + b2 ]
\(\displaystyle \frac{1}{2}\) ( x + y + z ) [ ( x - y )2 + ( y - z )2 + ( z - x )2 ]
= \(\displaystyle \frac{1}{2}\) ( x + y + z ) [ x2 - 2xy + y2 + y2 - 2yz + z2 + z2 - 2xz + x2 ]
= \(\displaystyle \frac{1}{2}\) ( x + y + z ) [ 2x2 - 2xy + 2y2 - 2yz + 2z2 - 2xz ]
= \(\displaystyle \frac{1}{2}\) ( x + y + z ) × 2 [ x2 - xy + y2 - yz + z2 - xz ]
=
= ( x + y + z ) ( x2 + y2 + z2 - xy - yz - xz )
[ using identity = x3 + y3 + z3 - 3xyz = ( x + y + z ) ( x2 + y2 + z2 - xy - yz - zx ) ]
= ( x )3 + ( y )3 + ( z )3 - 3 × x × y × z
= x3 + y3 + z3 - 3xyz
∴ LHS = RHS
So, proved LHS = RHS
Q13. If x + y + z = 0 , show that x3 + y3 + z3 = 3xyz.
Solution :
We have x3 + y3 + z3 = 3xyz
[ using identity = x3 + y3 + z3 - 3xyz = ( x + y + z ) ( x2 + y2 + z2 - xy - yz - zx ) ]
x3 + y3 + z3 - 3xyz = ( x + y + z ) ( x2 + y2 + z2 - xy - yz - zx )
= x3 + y3 + z3 - 3xyz = ( 0 ) ( x2 + y2 + z2 - xy - yz - zx ) [ put x + y + z = 0 ]
= x3 + y3 + z3 - 3xyz = 0
= x3 + y3 + z3 = 3xyz
∴ LHS = RHS
So, simplify RHS
Q14. Without actually calculating the cubes, find the value of each of the following :
(i) ( -12 )3 + ( 7 )3 + ( 5 )3
Solution :
We have ( -12 )3 + ( 7 )3 + ( 5 )3
[ using identity = x3 + y3 + z3 - 3xyz = ( x + y + z ) ( x2 + y2 + z2 - xy - yz - zx ) ]
Here, x = -12 , y = 7 and z = 5
( -12 )3 + ( 7 )3 + ( 5 )3 - 3xyz = 0
( -12 )3 + ( 7 )3 + ( 5 )3 = 3xyz [ according to the above identity ]
= ( -12 )3 + ( 7 )3 + ( 5 )3 = 3 ( -12 ) ( 7 ) ( 5 ) + ( -12 + 7 + 5 ) ( -122 + 72 + 52 - ( -12 × 7 ) - ( 7 × 5 ) - ( 5 × -12 )
= ( -12 )3 + ( 7 )3 + ( 5 )3 = -1260 + ( 0 ) ( 144 + 49 + 25 + 84 - 35 + 60 )
= ( -12 )3 + ( 7 )3 + ( 5 )3 = -1260 + ( 0 )
= ( -12 )3 + ( 7 )3 + ( 5 )3 = -1260
So, answer = -1260
(ii) ( 28 )3 + ( -15 )3 + ( -13 )3
Solution :
We have ( 28 )3 + ( -15 )3 + ( -13 )3
[ using identity = x3 + y3 + z3 - 3xyz = ( x + y + z ) ( x2 + y2 + z2 - xy - yz - zx ) ]
Here, x = 28 , y = -15 and z = -13
( 28 )3 + ( -15 )3 + ( -13 )3 - 3xyz = 0
( 28 )3 + ( -15 )3 + ( -13 )3 = 3xyz [ according to the above identity ]
= ( 28 )3 + ( -15 )3 + ( -13 )3 = 3 ( 28 ) ( -15 ) ( -13 ) + ( 28 - 15 - 13 ) ( 282 + ( -15)2 + ( -13 )2 - ( 28 × -15 ) - ( -15 × -13 ) - ( -13 × 28 )
= ( 28 )3 + ( -15 )3 + ( -13 )3 = 16380 + ( 0 ) ( 784 + 225 + 169 + 420 - 195 + 364 )
= ( 28 )3 + ( -15 )3 + ( -13 )3 = 16380 + ( 0 )
= ( 28 )3 + ( -15 )3 + ( -13 )3 = 16380
So, answer = 16380
Note:- you will found Answer in -ve (in your Book) so Don't worry above answer is Correct.
Q15. Give possible expressions for the length and breadth of each of the following rectangle, in which their areas are given :
(i) Area : 25a2 - 35a + 12
Solution :
Given 25a2 - 35a + 12
[ Using the splitting the middle term method ]
So, 25a2 - 35a + 12
= 25a2 - 20a - 15a + 12
= 5a ( 5a - 4 ) - 3 ( 5a - 4 )
= ( 5a - 3 ) ( 5a - 4 )
∴ Length = ( 5a - 3 ) , Breadth = ( 5a - 4 )
(ii) Area : 35y2 + 13y - 12
Solution :
Given 35y2 + 13y - 12
[ Using the splitting the middle term method ]
So, 35y2 + 13y - 12
= 35y2 + 28y - 15y - 12
= 7y ( 5y + 4 ) - 3 ( 5y + 4 )
= ( 7y - 3 ) ( 5y + 4 )
∴ Length = ( 7y - 3 ) , Breadth = ( 5y + 4 )
Q16. What are the possible expression for the dimension of the cuboids whose volumes are given below ?
(i) Volume : 3x3 - 12x
Solution :
Given 3x3 - 12x
3x3 - 12x [ find the common ]
= ( 3 ) ( x ) ( x - 4 )
∴ Length = 3 , Breadth = x and Height = ( x - 4 )
(ii) Volume : 12ky2 + 8ky - 20k
Solution :
Given 12ky2 + 8ky - 20k
12ky2 + 8ky - 20k [ find the common ]
= 4k ( 3y2 + 2y - 5 )
[ Using the splitting the middle term method ]
So, 4k ( 3y2 + 2y - 5 )
= 4k ( 3y2 + 5y - 3y - 5 ) [ find the common ]
= ( 4k ) [ ( y ( 3y + 5 ) - 1 ( 3y + 5 ) ]
= ( 4k ) ( y - 1 ) ( 3y + 5 )
∴ Length = 4k , Breadth = ( y - 1 ) and Height = ( 3y + 5 ) .