NCERT Solutions Class 8 Maths Chapter 9 Algebraic Expressions and Identities Exercise 9.1
Introduction:
In this exercise/article we will learn about expressions, four terms Monomial, Binomial, trinomial, Polynomial and terms, factors and coefficients of addition and subtraction of algebraic expressions find out Monomial, Binomial, trinomial, Polynomial the numerical factor of a term is called its numerical coefficient or simply coefficient.
NCERT Solutions Class 8 Maths Chapter 9 Algebraic Expressions and Identities :
- NCERT Class 8 Maths Algebraic Expressions and Identities Exercise 9.1
- NCERT Class 8 Maths Algebraic Expressions and Identities Exercise 9.2
- NCERT Class 8 Maths Algebraic Expressions and Identities Exercise 9.3
- NCERT Class 8 Maths Algebraic Expressions and Identities Exercise 9.4
- NCERT Class 8 Maths Algebraic Expressions and Identities Exercise 9.5
Class 8 Maths Exercise 9.1 (Page-140)
Q1. Identify the terms, their coefficients for each of the following expressions.
(i) 5xyz2 - 3zy
Solution :
We have given terms are 5xyz2 - 3zy
So, coefficients of 5xyz2 = 5
and coefficient of - 3zy = -3
(ii) 1+x+x2
Solution :
We have given terms are 1+x+x2
So, coefficient of 1 = 1
coefficient of x = 1
and coefficient of x2 = 1
(iii) 4x2y2- 4x2y2z2+z2
Solution :
We have given terms are 4x2y2- 4x2y2z2+z2
So, coefficient of 4x2y2 = 4
coefficient of - 4x2y2z2 = -4
and coefficient of z2 = 1
(iv) 3-pq+qr-rp
We have given terms are 3-pq+qr-rp
So, coefficient of 3 = 3
coefficient of -pq = -1
coefficient of qr = 1
and coefficient -rp = -1
(v) \(\displaystyle \frac{x}{2}+\frac{y}{2}-xy\)
Solution :
We have given terms are \(\displaystyle \frac{x}{2}+\frac{y}{2}-xy\)
So, coefficient of \(\displaystyle \frac{x}{2}\) = \(\displaystyle \frac{1}{2}\)
coefficient of = \(\displaystyle \frac{1}{2}\)
and coefficient of = -1
(vi) 0.3a - 0.6ab + 0.5b
Solution :
We have given terms are 0.3a - 0.6ab + 0.5b
So, coefficient of 0.3a = 0.3
coefficient of - 0.6ab = - 0.6
and coefficient of 0.5b = 0.5
Q2. Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do
not fit in any of these three categories?
x + y , 1000 , x + x2 + x3 + x4 , 7 + y + 5x , 2y - 3y2 , 2y - 3y2 + 4y3 , 5x - 4y + 3xy , 4z - 15z2 , ab + bc + cd + da , pqr , p2q + pq2 , 2p + 2q
Solution :
Monomials = 1000 , pqr
Binomials = x + y , 2y - 3y2 , 4z - 15z2 , p2q + pq2 , 2p + 2q
Trinomials = 7 + y + 5x , 2y - 3y2 + 4y3 , 5x - 4y + 3xy
Polynomials = x + x2 + x3 + x4 , ab + bc + cd + da
Class 8 Maths Chapter 9 Exercise 9.1
Q3.Add the following.
(i) ab - bc , bc - ca , ca - ab
Solution :
\(\displaystyle \begin{array}{l}\,\,\,ab-bc-ca\\-ab+bc+ca\\\overline{{\underline{{\,\,\,\,\,0\,\,\,+\,\,0\,\,+\,0\,\,\,\,\,}}}}\end{array}\)
If you have any doubt then follow the step by steps Given below :
( ab - bc ) + ( bc - ca ) + ( ca - ab )
= ab - bc + bc - ca + ca - ab
= ( ab - ab ) + ( - bc + bc ) + ( - ca + ca )
= (0) + (0) + (0)
= 0 + 0 + 0
= 0
( ii ) a - b + ab , b - c + bc , c - a + ac
Solution :
\(\displaystyle \begin{array}{l}\,\,\,a-b-c+ab+bc+ac\\-a+b+\,c\,+\,0\,+\,0\,+0\\\overline{{\underline{{\,\,\,0+\,0\,+0+\,ab+bc+ac\,}}}}\end{array}\)
If you have any doubt then follow the step by steps Given below :
a - b + ab + b - c + bc + c - a + ac
= ( a - b + ab ) + ( b - c + bc ) + ( c - a + ac )
= ( a - a ) + ( -b + b ) + ( -c + c ) + ( ab + bc + ac )
= ( 0 ) + ( 0 ) + ( 0 ) + ( ab + bc + ac )
= ab + bc + ac
(iii) 2p2q2 - 3pq + 4 , 5 + 7pq - 3p2q2
Solution :
\(\displaystyle \begin{array}{l}\,\,\,\,\,\,2{{p}^{2}}{{q}^{2}}-3pq+4\text{ }\\-\text{ }3{{p}^{2}}{{q}^{2}}+7pq+5\\\overline{{\underline{{\,\,-{{p}^{2}}{{q}^{2}}+\,4pq\,+9}}}}\,\end{array}\)
If you have any doubt then follow the step by steps Given below :
2p2q2 - 3pq + 4 + 5 + 7pq - 3p2q2
= ( 2p2q2 - 3p2q2 ) + ( - 3pq + 7pq ) + ( 4 + 5 )
= ( - p2q2 ) + ( 4pq ) + ( 9 )
= - p2q2 + 4pq + 9
(iv) l2 + m2 , m2 + n2 , n2 + l2 , 2lm + 2mn + 2nl
Solution :
\(\displaystyle \begin{array}{l}{{l}^{{2~}}}+{{m}^{2}}+{{n}^{2}}+2lm+2mn+2nl\\{{l}^{2}}+{{m}^{2}}+{{n}^{2}}\,\,+\,\,0\,\,\,+\,\,\,0\,\,\,+\,\,\,0\,\,\\\overline{{\underline{{2{{l}^{2}}+2{{m}^{2}}+2{{n}^{2}}+2lm+2mn+2nl}}}}\end{array}\)
If you have any doubt then follow the step by steps Given below :
l2 + m2 + m2 + n2 + n2 + l2 + 2lm + 2mn + 2nl
= ( l2 + l2 ) + ( m2 + m2 ) + ( n2 + n2 ) + ( 2lm + 2mn + 2nl )
= ( 2l2 ) + ( 2m2 ) + ( 2n2 ) + ( 2lm + 2mn + 2nl )
= 2l2 + 2m2 + 2n2 + 2lm + 2mn + 2nl
= 2 ( l2 + m2 + n2 + lm + mn + nl )
Q4. (a) Subtract 4a - 7ab + 3b + 12 from 12a - 9ab + 5b - 3
Solution :
( 12a - 9ab + 5b - 3 ) - ( 4a - 7ab + 3b + 12 )
= 12a - 9ab + 5b - 3 - 4a + 7ab - 3b - 12
= 12a - 4a - 9ab + 7ab + 5b - 3b - 3 - 12
= 8a - 2ab + 2b - 15
(b) Subtract 3xy + 5yz - 7zx from 5xy - 2yz - 2zx + 10xyz
Solution :
( 5xy - 2yz - 2zx + 10xyz ) - ( 3xy + 5yz - 7zx )
= 5xy - 2yz - 2zx + 10xyz - 3xy - 5yz + 7zx
= 5xy - 3xy - 2yz - 5yz + 7zx + 10xyz
= 2xy - 7yz + 7zx + 10xyz
(c) Subtract 4p2q - 3pq + 5pq2 - 8p + 7q - 10 from 18 - 3p - 11q + 5pq - 2pq2 + 5p2q
Solution :
( 18 - 3p - 11q + 5pq - 2pq2 + 5p2q ) - ( 4p2q - 3pq + 5pq2 - 8p + 7q - 10 )
= 18 - 3p - 11q + 5pq - 2pq2 + 5p2q - 4p2q + 3pq - 5pq2 + 8p - 7q + 10
= 18 + 10 - 3p + 8p - 11q - 7q + 5pq + 3pq - 2pq2 - 5pq2 + 5p2q - 4p2q
= 28 + 5p - 18q + 8pq - 7pq2 + p2q .
NCERT Solutions Class 8 Maths Chapter 9 Algebraic Expressions and Identities :
- NCERT Class 8 Maths Algebraic Expressions and Identities Exercise 9.1
- NCERT Class 8 Maths Algebraic Expressions and Identities Exercise 9.2
- NCERT Class 8 Maths Algebraic Expressions and Identities Exercise 9.3
- NCERT Class 8 Maths Algebraic Expressions and Identities Exercise 9.4
- NCERT Class 8 Maths Algebraic Expressions and Identities Exercise 9.5