NCERT Solutions Class 7 Maths Chapter 11 Exponents and Powers Exercise 11.2
Introduction:
Numbers in exponential form obey certain laws, which are :
For any non-zero integers a and b and whole numbers m and n,
a) am× an= a m+ n
b) am ÷ an =am-n
c) (am)n = a m n
d) am × bm = (ab)m
e) am ÷ bm = \(\displaystyle {{(\frac{a}{b})}^{m}}\)
f) a0 = 1
g) (-1)even number = 1
h) (-1)odd number = -1
NCERT Class 7 Maths Chapter 11 Exponents and Powers Exercise 11.1
NCERT Class 7 Maths Chapter 11 Exponents and Powers Exercise 11.2
NCERT Class 7 Maths Chapter 11 Exponents and Powers Exercise 11.3
Class 7 Maths Exercise 11.2
(Page-181)
Q1. Using laws of exponents, simplify and write the answer in exponential form:
i) 32× 34× 38
ii)615 ÷ 610
iii)a3 × a2
iv) 7x × 72
v) (52)3 ÷ 53
vi) 25 × 55
vii) a4 × b4
viii) ( 34)3
ix) (220 ÷ 215) × 23
x) 8t × 82
Solution:
i) 3(2+4+8)
= 314
ii) 6(15-10)
= 65
iii) a(3+2)
= a5
iv) 7(x+2)
v) 5(2×3) ÷ 53
= 56 ÷ 53
= 5(6-3)
= 53
vi) ( 2×5)5
= 105
vii) (a × b)4
viii) 3(4×3)
= 312
ix) 2(20-15) × 23
= 25× 23
= 2(5+3)
= 28
x) 8(t-2)
Q2. Simplify and Express each of the following in exponential form:
i) \(\displaystyle \frac{{{{2}^{3}}\times {{3}^{4}}\times 4}}{{3\times 32}}\)
ii) ((52)3 ×54)÷ 57
iii) 254 ÷ 53
iv) \(\displaystyle \frac{{3\times {{7}^{2}}\times {{{11}}^{8}}}}{{21\times {{{11}}^{3}}}}\)
v) \(\displaystyle \frac{{{{3}^{7}}}}{{{{3}^{4}}\times {{3}^{3}}}}\)
vi) 20 + 30+ 40
vii) 20 × 30 ×40
viii) (30 + 20)× 50
ix) \(\displaystyle \frac{{{{2}^{8}}\times {{a}^{5}}}}{{{{4}^{3}}\times {{a}^{3}}}}\)
x) \(\displaystyle (\frac{{{{a}^{5}}}}{{{{a}^{3}}}})\) × a8
xi) \(\displaystyle \frac{{{{4}^{5}}\times {{a}^{8}}{{b}^{3}}}}{{{{4}^{5}}\times {{a}^{5}}{{b}^{2}}}}\)
xii) (23× 2)2
Solution:
i) \(\displaystyle \frac{{{{2}^{3}}\times {{3}^{4}}\times {{2}^{2}}}}{{3\times {{2}^{5}}}}\)
= \(\displaystyle \frac{{{{2}^{{(3+2)}}}\times {{3}^{4}}}}{{3\times {{2}^{5}}}}\)
= \(\displaystyle \frac{{{{2}^{5}}\times {{3}^{{(4-1)}}}}}{{{{2}^{5}}}}\)
= \(\displaystyle \frac{{{{2}^{5}}\times {{3}^{{(3)}}}}}{{{{2}^{5}}}}\)
= 2(5-5) × 33
= 20× 33
= 1× 33
= 33
ii) 5(2×3)×54)÷ 57
= (56×54)÷ 57
= 5(6+4) ÷ 57
= 510 ÷ 57
= 5(10-7)
= 53
iii) (52)4 ÷53
= 5(2×4) ÷53
= 58 ÷53
= 5(8-3)
= 55
iv) \(\displaystyle \frac{{3\times {{7}^{2}}\times {{{11}}^{8}}}}{{3\times 7\times {{{11}}^{3}}}}\)
= \(\displaystyle \frac{{3\times {{7}^{{(2-1)}}}\times {{{11}}^{8}}}}{{3\times {{{11}}^{3}}}}\)
= \(\displaystyle \frac{{3\times {{7}^{{(1)}}}\times {{{11}}^{{(8-3)}}}}}{3}\)
= 7× 115
v) \(\displaystyle \frac{{{{3}^{7}}}}{{{{3}^{{4+3}}}}}\)
= \(\displaystyle \frac{{{{3}^{7}}}}{{{{3}^{7}}}}\)
= 30
= 1
vi) 20 + 30+ 40
= 1+1+1
= 3
vii) 20 × 30 ×40
= 1×1×1
= 1
viii) (30 + 20)× 50
= (1 + 1)× 1
= (2)× 1
= 2
ix) \(\displaystyle \frac{{{{2}^{8}}\times {{a}^{5}}}}{{{{{({{2}^{2}})}}^{3}}\times {{a}^{3}}}}\)
= \(\displaystyle \frac{{{{2}^{8}}\times {{a}^{5}}}}{{{{2}^{6}}\times {{a}^{3}}}}\)
= \(\displaystyle \frac{{{{2}^{8}}\times {{a}^{{(5-3)}}}}}{{{{2}^{6}}}}\)
= \(\displaystyle \frac{{{{2}^{8}}\times {{a}^{2}}}}{{{{2}^{6}}}}\)
= 2(8-6) × a2
= 22 × a2
= (2a)2
x) \(\displaystyle ({{a}^{{5-3}}})\times a8\)
= a2× a8
= a2+8
= a10
xi) \(\displaystyle \frac{{{{4}^{{5-5}}}\times {{a}^{8}}{{b}^{3}}}}{{{{a}^{5}}{{b}^{2}}}}\)
= \(\displaystyle \frac{{{{4}^{0}}\times {{a}^{8}}{{b}^{3}}}}{{{{a}^{5}}{{b}^{2}}}}\)
= \(\displaystyle \frac{{1\times {{a}^{8}}{{b}^{3}}}}{{{{a}^{5}}{{b}^{2}}}}\)
= (a8-5)(b3-2)
= a3b1
= a3b
xii) (23× 2)2
= (23×2)×22
= 26×22
= 26+2
= 28
Q3. Say true or false and justify your answer:
i) 10 × 1011 = 10011
ii) 23 > 52
iii) 23 × 32 = 65
iv) 30 = (1000)0
Solution:
i) False
101 × 1011 = 10011
1012 = (102)11
1012 ≠ 1022
ii) False
23 > 52
2×2×2> 5×5
8<25 iii) False
23 × 32 = 65
8×9 = 7776
72 ≠ 7776
iv) true
30 = (1000)0
1 = 1
Q4. Express each of the following as a product of prime factors only in exponential form:
i) 108 × 192
ii) 270
iii) 729 × 64
iv) 768
Solution:
i) 108 × 192
108 × 192 = 2×2×3×3×3×2×2×2×2×2×2×3
= 28 × 34
ii)
270 = 2×3×3×3×5
= 2 × 33×5
iii)
729 × 64= 3×3×3×3×3×3×2×2×2×2×2×2
= 26 × 36
= (2×3)6
iv)
768 = 2×2×2×2×2×2×2×2×3
=28 × 3
Q5. Simplify:
i) \(\displaystyle \frac{{{{{({{2}^{5}})}}^{2}}\times {{7}^{3}}}}{{{{8}^{3}}\times \,7}}\)
ii) \(\displaystyle \frac{{25\times {{5}^{2}}\times {{t}^{8}}}}{{{{{10}}^{3}}\times {{t}^{4}}}}\)
iii) \(\displaystyle \frac{{{{3}^{5}}\times {{{10}}^{5}}\times 25}}{{{{5}^{7}}\times {{6}^{5}}}}\)
Solution:
i) \(\displaystyle \frac{{{{2}^{{10}}}\times {{7}^{3}}}}{{{{{({{2}^{3}})}}^{3}}\times 7}}\)
= \(\displaystyle \frac{{{{2}^{{10}}}\times {{7}^{3}}}}{{{{2}^{9}}\times 7}}\)
= 2(10-9) ×7(3-1)
= 2×72
= 2×49
=98
ii) \(\displaystyle \frac{{{{5}^{2}}\times {{5}^{2}}\times {{t}^{8}}}}{{{{{(2\times 5)}}^{3}}\times {{t}^{4}}}}\)
= \(\displaystyle \frac{{{{5}^{2}}\times {{5}^{2}}\times {{t}^{{8-4}}}}}{{{{{(2\times 5)}}^{3}}}}\)
= \(\displaystyle \frac{{{{5}^{{(2+2)}}}\times {{t}^{4}}}}{{{{{(2\times 5)}}^{3}}}}\)
= \(\displaystyle \frac{{{{5}^{{(4)}}}\times {{t}^{4}}}}{{{{2}^{3}}\times {{5}^{3}}}}\)
= \(\displaystyle \frac{{{{5}^{{(4-3)}}}\times {{t}^{4}}}}{{{{2}^{3}}}}\)
= \(\displaystyle \frac{{5{{t}^{4}}}}{8}\)
iii) \(\displaystyle \frac{{{{3}^{5}}\times {{{10}}^{5}}\times 25}}{{{{5}^{7}}\times {{6}^{5}}}}\)
= \(\displaystyle \frac{{{{3}^{5}}\times {{{(2\times 5)}}^{5}}\times {{5}^{2}}}}{{{{5}^{7}}\times {{{(2\times 3)}}^{5}}}}\)
= \(\displaystyle \frac{{{{3}^{5}}\times {{2}^{5}}\times {{5}^{5}}\times {{5}^{2}}}}{{{{5}^{7}}\times {{2}^{5}}\times {{3}^{5}}}}\)
= \(\displaystyle \frac{{{{3}^{{5-5}}}\times {{2}^{{5-5}}}\times {{5}^{{5+2}}}}}{{{{5}^{7}}}}\)
= \(\displaystyle \frac{{{{3}^{0}}\times {{2}^{0}}\times {{5}^{7}}}}{{{{5}^{7}}}}\)
= 1×1×5(7-7)
= 1×70
= 1×1
=1